New sufficient condition for Hamiltonian graphs

نویسندگان

  • Kewen Zhao
  • Hong-Jian Lai
  • Yehong Shao
چکیده

Let G be a graph and α(G) be the independence number of G. For a vertex v ∈ V (G), d(v) and N(v) represent the degree of v and the neighborhood of v in G, respectively. In this paper, we prove that if G is a k-connected graph of order n, and if max{d(v) : v ∈ S} ≥ n/2 for every independent set S of G with |S| = k which has two distinct vertices x, y ∈ S satisfying 1 ≤ |N(x) ∩N(y)| ≤ α(G)− 1, then G is Hamiltonian.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new constraint of the Hamilton cycle algorithm

Grinberg’s theorem is a necessary condition for the planar Hamilton graphs. In this paper, we use cycle bases and removable cycles to survey cycle structures of the Hamiltonian graphs and derive an equation of the interior faces in Grinberg’s Theorem. The result shows that Grinberg’s Theorem is suitable for the connected and simple graphs. Furthermore, by adding a new constraint of solutions to...

متن کامل

A New Property of Hamilton Graphs

A Hamilton cycle is a cycle containing every vertex of a graph. A graph is called Hamiltonian if it contains a Hamilton cycle. The Hamilton cycle problem is to find the sufficient and necessary condition that a graph is Hamiltonian. In this paper, we give out some new kind of definitions of the subgraphs and determine the Hamiltoncity of edges according to the existence of the subgraphs in a gr...

متن کامل

Maximally non-hamiltonian graphs of girth 7

We describe a sufficient condition for graphs used in a construction of Thomassen (which yields hypohamiltonian graphs) to produce maximally non-hamiltonian (MNH) graphs as well. Then we show that the Coxeter graph fulfils this sufficient condition, and thus applying the Thomassen’s construction to multiple copies of the Coxeter graph yields infinitely many MNH graphs with girth 7. So far, the ...

متن کامل

Characterizing forbidden pairs for hamiltonian properties 1

In this paper we characterize those pairs of forbidden subgraphs sufficient to imply various hamiltonian type properties in graphs. In particular, we find all forbidden pairs sufficient, along with a minor connectivity condition, to imply a graph is traceable, hamiltonian, pancyclic, panconnected or cycle extendable. We also consider the case of hamiltonian-connected graphs and present a result...

متن کامل

Hamiltonian Path in 2-Trees

For a connected graph, a path containing all vertices is known as Hamiltonian path. For general graphs, there is no known necessary and sufficient condition for the existence of Hamiltonian paths and the complexity of finding a Hamiltonian path in general graphs is NP-Complete. We present a necessary and sufficient condition for the existence of Hamiltonian paths in 2-trees. Using our character...

متن کامل

Non-Hamiltonian Holes in Grid Graphs

In this paper we extend general grid graphs to the grid graphs consist of polygons tiling on a plane, named polygonal grid graphs. With a cycle basis satisfied polygons tiling, we study the cyclic structure of Hamilton graphs. A Hamilton cycle can be expressed as a symmetric difference of a subset of cycles in the basis. From the combinatorial relations of vertices in the subset of cycles in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1990